4.5 Article

Single crystal epitaxial [Co/CoO]n superlattices consisting of ferromagnetic metal and antiferromagnetic insulator

期刊

出版社

ELSEVIER
DOI: 10.1016/j.jmmm.2019.165829

关键词

Superlattice; Antiferromagnetic insulator; Ferromagnetic metal; Anomalous Hall effect; Single crystal epitaxial film

资金

  1. National Natural Science Foundation of China [11434006, 51871112]
  2. National Basic Research Program of China [2015CB921502]
  3. 111 Project [B13029]

向作者/读者索取更多资源

Heterostructures consisting of ferromagnetic metal and antiferromagnetic insulator have exhibited novel properties in interface exchange coupling, magnetoresistance and spin injection due to their fundamental physics of magnetism. However, as compared with bilayer heterostructures, it is very challenging in experiments to prepare single crystal epitaxial ultrathin superlattices consisting of ferromagnetic metal and antiferromagnetic insulator, where the interface exchange coupling, magnetic order, and electrical transport properties are expected to be greatly modulated due to the multiple interfaces and periodical structures. Here we prepared single crystal epitaxial [Co/CoO](n) superlattices consisting of ferromagnetic metal Co and antiferromagnetic insulator CoO by molecular beam epitaxy. It is found that the saturation magnetization of [Co 0.6 nm/CoO 1.2 nm](5) superlattice is robust against temperature increase, which only shows a slight decrease of 1.5% from 5 K to 300 K. Moreover, we found that the longitudinal resistivity and anomalous Hall resistivity of [Co/CoO](n) superlattices are strongly modulated by the short-period Co/CoO heterostructure, which are quite distinguished from the electrical transport properties of Co bulk ferromagnetic metal. The [Co/CoO](n) superlattices provide a new insight into heterostructures consisting of ferromagnetic metal and antiferromagnetic insulator, which are beneficial for designing future spintronics devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据