4.7 Article

Investigating CO2 removal by Ca- and Mg-based sorbents with application to indoor air treatment

期刊

BUILDING AND ENVIRONMENT
卷 110, 期 -, 页码 161-172

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2016.10.008

关键词

Ventilation; Bioeffluents; Air cleaning; Indoor air pollution; Sorption

资金

  1. Republic of Singapore's National Research Foundation through a grant to the Berkeley Education Alliance for Research in Singapore (BEARS)
  2. Singapore MOE Academic Research Fund Tier 1 [RG 113/14]

向作者/读者索取更多资源

Indoor carbon dioxide (CO2) levels serve as an indicator of ventilation sufficiency in relation to metabolic effluents. Recent evidence suggests that elevated CO2 exposure (with or without other bioeffluents) may cause adverse cognitive effects. In shelter-in-place (SIP) facilities, indoor CO2 levels may become particularly elevated. This study evaluates four low-cost alkaline earth metal oxides and hydroxides as CO2 sorbents for potential use in indoor air cleaning applications. Sorbents studied were MgO, Mg(OH)(2), Ca(OH)(2) and commercially available soda lime. Uncarbonated sorbents characterized with nitrogen adsorption porosimetry showed BET surface areas in the 5.6-27 m(2)/g range. Microstructural analyses, including X-ray diffraction, thermogravimetric analysis and scanning electron microscopy confirmed the carbonation mechanisms and extent of sorption under environmental conditions typical of indoor spaces. Ca-based sorbents demonstrated higher extent of carbonation than Mg-based sorbents. Laboratory parameterizations, including rate constants (k) and carbonation yields (y), were applied in material balance models to assess the CO2 removal potential of Ca-based sorbents in three types of indoor environments. Soda lime (k = [2.2-3.6] x 10(-3) m(3) mol CO2-1 y = 0.49-0.51) showed potential for effective use in SIP facilities. For example, CO2 exposure in a modeled SIP facility could be reduced by 80% for an 8-h sheltering interval and to levels below 5000 ppm for an 8-h period with a practically sized air cleaner. Predicted effectiveness was more modest for bedrooms and classrooms. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据