4.7 Article

Wind tunnel tests of inter-flat pollutant transmission characteristics in a rectangular multi-storey residential building, part A: Effect of wind direction

期刊

BUILDING AND ENVIRONMENT
卷 108, 期 -, 页码 159-170

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.buildenv.2016.08.032

关键词

Wind tunnel test; Gaseous pollutant; Tracer gas; Multi-storey residential buildings

资金

  1. Natural Science Foundation of China [51278348]
  2. Fundamental Research Funds for the Central Universities of China
  3. State Key Laboratory of Building Safety and Environment of China Academy of Building Research

向作者/读者索取更多资源

The inter-flat dispersion of hazardous air pollutants in residential built environment has become a growing concern, especially in crowed urban areas. The purpose of present study is to investigate the wind induced air pollutant transmission and cross contamination routes in typical buildings. In this paper, a series of experiments was carried out in a boundary layer wind tunnel using a 1:30 scaled model that represented the typical configuration of rectangular multi-storey residential buildings in Shanghai. Sulfur hexafluoride (SF6) was employed as tracer gas in the wind tunnel tests. The conditions under two ventilation modes, i.e. single-sided natural ventilation and cross natural ventilation, were compared. The tracer gas concentration distributions under four approaching wind angles were monitored and analyzed. Computational Fluid Dynamics (CFD) method was adopted to assist in analyzing airflow patterns. The experiment results elucidated that in the two ventilation scenarios, both of the vertical and horizontal inter-flat airborne transmission could proceed. The wind direction played a key role on the pollutant concentration distribution. Compared with the single-sided ventilation mode, cross ventilation could weaken the air pollutant dispersion along the vertical direction when the contamination source was on the windward or on the leeward unit. When the wind blowing parallelly to the source unit window, namely the source room was on the sideward, cross ventilation would not suppress the vertical transport on one hand, but reinforce the horizontal transmission on the other hand. The study is helpful for the analysis of infection risk of respiratory diseases in the residential buildings. (C) 2016 Elsevier Ltd. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据