4.6 Article

Correlation between the T1 copper reduction potential and catalytic activity of a small laccase

期刊

JOURNAL OF INORGANIC BIOCHEMISTRY
卷 201, 期 -, 页码 -

出版社

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jinorgbio.2019.110843

关键词

Small laccase; Type 1 (T1) copper; Reduction potential; Axial ligand; Substituted phenols

资金

  1. Heinrich Heine University Dusseldorf

向作者/读者索取更多资源

Laccases are multicopper enzymes that catalyze oxidation of electron-rich substrates coupled to reduction of molecular oxygen to water. Since the Type 1 copper (T1 Cu) is the site where electrons are withdrawn from the substrate, it is assumed that the reduction potential of this copper correlates with enzyme activity. Herein, we studied the correlation of the T1 Cu reduction potential and the enzymatic activity of the small two-domain laccase Ssl1 from Streptomyces sviceus. For a systematic approach, we aimed to minimize any effects other than the reduction potential difference. To this end, we constructed a series of Ssl1 mutants with reduction potentials varying from < 290 to 560 mV. Along with the hydrophobicity of the axial ligand of the T1 Cu also structural changes in the substrate binding site and additional hydrogen bonding increased the reduction potential. Enzyme activity experiments demonstrated that the T1 Cu reduction potential has a different effect on oxidation of different substrates. Whereas there was no obvious correlation between the T1 Cu reduction potential and kinetic parameters for the oxidation of syringaldazine (with a reduction potential of 390 mV), a good correlation was observed between the T1 Cu reduction potential and the conversion of substituted phenols with reduction potentials between 660 and 820 mV. This correlation was pronounced for the Ssl1 variants with reduction potentials above 470 mV, which demonstrated increased activities also during the oxidation of two dyes, alizarin red S and indigo carmine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据