4.5 Article

Facile development of electrically conductive comfortable fabrics using metal ions

期刊

JOURNAL OF INDUSTRIAL TEXTILES
卷 51, 期 7, 页码 1100-1120

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/1528083719893713

关键词

metal particles; polyester; wool; electrical conductive; comfortability

资金

  1. National Research Centre, Cairo, Egypt [AR 110302]

向作者/读者索取更多资源

The research proposed a non-deteriorative method for preparing conductive fabrics using heavy metal ion salts for treatment, as well as direct use of nano zinc oxide. Treated fabrics showed enhanced electrical conductivity and improved comfort properties.
Development of conductive fabrics causes usually deterioration of the some of the comfort attributes of the final textile product. In this work, we propose a simple non-deteriorative method for preparation of electrical conductive fabrics based on wool and polyester as well as the blended fabric thereof. The unmodified fabrics or saponified polyester or oxidized wool were treated in aqueous solution containing heavy metal ion salts, namely, silver nitrate, copper II sulfate using exhaustion technique at 70 degrees C for 1 h followed by reduction step. Nano zinc oxide was also used directly for treatment on the said fabrics. The electrical conductivity of the metal ions-treated fabrics and the influence of sewing on their conductivity was measured. The effect of pretreatment of the fabrics, saponification of polyester or oxidation of wool on their ability to absorb metal ions was monitored. Scanning electron microscopy and energy dispersive X-ray spectroscopy were used to prove the incorporation of metal particles onto the treated fabrics. The change in chemical composition of the treated fabrics was studied using Fourier transform infrared spectroscopy. Atomic absorption was adopted to measure the amount of metal incorporated onto the treated fabrics. The formation of nanometal crystals was proved using X-ray diffraction pattern. Different parameters of comfort, namely, air/water permeability of the treated as well as untreated fabrics were assessed. The treated fabrics exhibit enhanced electrical conductivity as well as some improved comfort properties without any effect on their inherent mechanical properties.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据