4.6 Article

Neonatal Injury Increases Gut Permeability by Epigenetically Suppressing E-Cadherin in Adulthood

期刊

JOURNAL OF IMMUNOLOGY
卷 204, 期 4, 页码 980-989

出版社

AMER ASSOC IMMUNOLOGISTS
DOI: 10.4049/jimmunol.1900639

关键词

-

资金

  1. National Institutes of Health [R21 AI126097]
  2. American Heart Association [17GRNT33460395]

向作者/读者索取更多资源

Altered intestinal epithelial integrity is an important susceptibility trait in inflammatory bowel disease (IBD), and early life stressors are reported to contribute to this disease susceptibility in adulthood. To identify disease mechanisms associated with early-life trauma that exacerbate IBD in adulthood, we used a double-hit neonatal inflammation (NI) and adult inflammation (AI) model that exhibits more severe mucosal injury in the colon later in life. In this study, we explore the underlying mechanisms of this aggravated injury. In rats exposed to both NI and AI, we found sustained increases in colonic permeability accompanied by significantly attenuated expression of the epithelial junction protein E-cadherin. Quantitative RT-PCR revealed a decreased Cdhl (gene of E-cadherin) mRNA expression in NI + AI rats compared with NI or AI rats. Next, we performed microRNA microarrays to identify potential regulators of E-cadherin in NI + AI rats. We confirmed the overexpression of miR-155, a predicted regulator of E-cadherin, and selected it for further analysis based on reported significance in human IBD. Using ingenuity pathway analysis software, the targets and related canonical pathway of miR-155 were analyzed. Mechanistic studies identified histone hyperacetylation at the Mir155 promoter in NI + AI rats, concomitant with elevated RNA polymerase II binding. In vitro, E-cadherin knockdown markedly increased epithelial cell permeability, as did overexpression of miR-155 mimics, which significantly suppressed E-cadherin protein. In vivo, NI + AI colonic permeability was significantly reversed with administration of miR-155 inhibitor rectally. Our collective findings indicate that early-life inflammatory stressors trigger a significant and sustained epithelial injury by suppressing E-cadherin through epigenetic mechanisms.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据