4.7 Article

Determining the impact of a severe dry to wet transition on watershed hydrodynamics in California, USA with an integrated hydrologic model

期刊

JOURNAL OF HYDROLOGY
卷 580, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhydrol.2019.124358

关键词

Climate extremes; High performance computing; Integrated hydrologic model; Watershed dynamics; Remote sensing; Water management

资金

  1. Berkeley Lab by Office of Science, of the U.S. Department of Energy [DE-AC02-05CH11231]
  2. U.S. Department of Energy [DE-AC02-05CH11231]

向作者/读者索取更多资源

With the onset of climate change, regions relied upon for water supply are increasingly subject to end-member fluctuations between periods of severe drought followed by extreme precipitation. The impacts of these extreme conditions on watershed hydrodynamics in water-resource sensitive regions such as California are unknown despite their great importance for resilience and water management purposes. Understanding these impacts requires high-resolution physically based models to capture sharp variations of topography, land use, wetting fronts, etc. An integrated hydrologic model was used in a high-performance computing framework to study the complex nonlinear dynamics occurring at a representative Californian watershed. The Cosumnes Watershed, one of the last major rivers in California without a dam, offers a rare opportunity to isolate the effects of water management from climate extremes. Here, we show model validation with comparisons between model outputs and local measurements in addition to various satellite-based products including (1) Snow Water Equivalent (SWE) with Snow Data Assimilation System (SNODAS) and a reconstruction method by Bair and co-authors, (2) soil moisture with Soil Moisture Active Passive (SMAP), and (3) evapotranspiration (ET) with Mapping Evapotranspiration at high Resolution with Internalized Calibration (METRIC). To assess changes in hydrodynamic behavior during climate extremes and their transitions, a simulation spanning a recent drought followed by the highest precipitation year on record (2015-2017) is discussed. From these simulations, we are able to highlight regions that are the most sensitive to climate extremes, which depend on many factors including hydrologic connectivity, geology and topography. These analyses provide a better understanding of the physical phenomena occurring in the watershed, strengthening our knowledge of how the system may respond to extreme conditions which might become the new normal.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据