4.7 Article

Superimposed surface plasma resonance effect enhanced the near-infrared photocatalytic activity of Au@Bi2WO6 coating for rapid bacterial killing

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 380, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.120818

关键词

Antibacterial; Two-dimensional materials; Surface plasmon resonance; Photocatalytic

资金

  1. Natural Science Fund of Hubei Province [2018CFA064]
  2. National Natural Science Foundation of China [51671081, 51871162, 51801056, 51422102]
  3. National Key R&D Program of China [2016YFC1100600, 2016YFC1100604]

向作者/读者索取更多资源

Bacterial infection has become a serious public health challenge because the misuse of antibiotics worldwide has induced bacterial resistance and superbug occurrences, that is, no suitable antibiotics are available. Herein, we design a new infrared photocatalytic system on titanium (Ti) substrates, and it consists of gold (Au) nanorod-decorated bismuth tungstate (Bi2WO6) nanosheets (Au@Bi2WO6). The surface plasmon resonance (SPR) effect induced by near infrared (NIR) facilitates partial photo-induced electron transfer between Au and Bi2WO6, resulting in accelerated charge transmission and consequently hindering electron-hole recombination, which imparts high photocatalytic property to the coating. In addition, the superimposed SPR from both Au and Bi2WO6 can improve the photothermal effect of Au@Bi2WO6. As a result, when irradiated with 808 nm NIR for 15 min, this hybrid coating exhibits a superior antibacterial efficiency of 99.96% and 99.62% against Escherichia coli and Staphylococcus aureus, respectively, due to the synergistic effects of high yield of radical oxygen species and hyperthermia; this efficiency cannot be achieved by either Au-Ti or Bi2WO6-Ti alone. This platform exhibits a great potential for noninvasive disinfection without using antibiotics.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据