4.7 Article

Highly selective adsorption of vanadium (V) by nano-hydrous zirconium oxide-modified anion exchange resin

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 384, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121386

关键词

Vanadium (V); Anion exchange resin; Hydrous zirconium oxide; Nanocomposite; Selective adsorption

资金

  1. National Key R&D Program of China [2018YFC1802404]
  2. Fundamental Research Funds for the Central Universities [2652018183]
  3. MOE Key Laboratory of Resources and Environmental Systems Optimization (NCEPU)

向作者/读者索取更多资源

Adsorption is widely used in removal of toxic vanadium (V) [V(V)] from water streams, and a fit-for-purpose adsorbent plays a vital role in this process. Herein HZrO@D201, an adsorbent with decoration of nanosized hydrous zirconium oxide (HZrO) on anion exchange resin D201, is fabricated for efficient V(V) removal. Compared to pristine D201, HZrO@D201 excelled in V(V) removal with a maximum adsorption capacity of 118.1 mg/g, due to potential formation of inner sphere complexation between V(V) and HZrO. HZrO@D201 could also functioned well in a wide pH range (3.00 to 9.00) and exhibited outstanding selective V(V) adsorption under the presence of competing anions (chloride, nitrate, sulfate, and phosphate). The adsorption thermodynamics was in accordance with the Langmuir model, while adsorption kinetics followed the Pseudo-Second-Order model. When treating actual vanadium contaminated groundwater from Panzhihua region (China), HZrO@D201 indicated a satisfactory lifespan in the column experiment for V(V) removal (2.41 times longer than D201), and the treated groundwater could meet the vanadium standard of drinking water source in China (less than 50 mu g/L). Regeneration of HZrO@D201 was easily achievable with negligible capacity loss. Results from this work suggests a promising application potential of HZrO@D201 in vanadium pollution control.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据