4.7 Article

Benzotriazole removal mechanisms in pilot-scale constructed wetlands treating cooling tower water

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 384, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121314

关键词

Benzotriazole; Constructed wetlands; Biodegradation; Adsorption; Photodegradation

资金

  1. Netherlands Organisation for Scientific Research (NWO) - Ministry of Economic Affairs
  2. Netherlands Ministry of Infrastructure and Environment
  3. Dutch Water Nexus consortium [STW 14302 Water Nexus 3]

向作者/读者索取更多资源

The reuse of discharged cooling tower water (CTW) in the cooling tower itself could reduce fresh water intake and help mitigating fresh water scarcity problems. However, this requires desalination prior to its reuse, and hindering fractions, such as conditioning chemicals, should be removed before desalination to obtain a higher desalination efficiency. Constructed wetlands (CWs) can provide such a pre-treatment. In this study, the mechanisms underlying the removal of conditioning chemical benzotriazole (BTA) in CWs was studied using an innovative approach of differently designed pilot-scale CWs combined with batch removal experiments with substrate from these CWs. By performing these combined experiments, it was possible to determine the optimal CW design for BTA removal and the most relevant BTA removal processes in CWs. Adsorption yielded the highest contribution, and the difference in removal between different CW types was linked to their capability to aerobically biodegrade BTA. This knowledge on the main removal mechanisms for BTA allows for a CW design tailored for BTA removal. In addition, the outcomes of this research show that performing batch experiments with CW substrate allows one to determine the relevant removal mechanisms for a given compound which results in a better understanding of CW removal processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据