4.7 Article

Ultrahigh adsorbability towards different antibiotic residues on fore-modified self-functionalized biochar: Competitive adsorption and mechanism studies

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 390, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2020.122127

关键词

Ultrasonic-assistant; Fore-modified; Competitive adsorption; Antibiotic; Mechanism studies

资金

  1. National Natural Science Foundation of China [21577137]
  2. National Key Research and Development Plan [2016YFC1402206]
  3. Initiative Research for Highlevel Talents of Inner Mongolia University [12000-15031937]

向作者/读者索取更多资源

An ultrasonic-assistant fore-modified method was designed to develop the self-functionalized biochar (SFB) with enhanced adsorbability. Characterized by different morphologies, SFB was presenting particular groups of carbon micro-spheres. Possessing ultrahigh surface area of 2368 m(2)/g, SFB exhibited excellent adsorption capacity (up to 497 mg/g) towards traditional antibiotic. Besides, more functional groups, which played important roles on the solid-liquid interface interaction, posed on the surface of SFB. The removal efficiency of levofloxacin was up to 99.93 % in the competitive system. Adsorption mechanism was analyzed based on the results of FTIR, kinetics, isotherms and competitive adsorption experiments. The chemisorption affinity on the solid-liquid interface was strong enough, which was proved by isotherms, thermodynamics and K-d analyses. Meanwhile, SFB has presented a good resistance against humid acid interference in aqueous environment. Thus, the ultrasonic-assistant fore-modified method was potential in dramatically improving the feature of biochars. SFB presented excellent adsorbability to antibiotics and exhibits extraordinary potential in wastewater treatment.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据