4.7 Article

Synthesis of novel ternary heterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts for the highly efficient degradation of acetaminophen under visible light irradiation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 382, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121083

关键词

Photocatalysis; Heterojunction; Biphase TiO2; Bi4O5I2; Acetaminophen

资金

  1. National Science Funds for Creative Research Groups of China [51421006]
  2. Natural Science Foundation of China [51679063]
  3. Fundamental Research Funds for The Central Universities [2018B14514]
  4. Key Program of National Natural Science Foundation of China [91647206]
  5. National Key Plan for Research and Development of China [2016YFC0502203]
  6. PAPD

向作者/读者索取更多资源

Bi4O5I2 loaded anatase-TiO2 (B) biphase nanowires composite photocatalysts were fabricated by an in situ calcination method and exhibited outstanding photocatalytic activity. The microstructure, optical performance and band structure of the composite photocatalysts were investigated by relevant characterizations. The results demonstrated the successful formation of heterojunction between anatase-TiO2 (B) biphase nanowires and Bi4O5I2, which integrated the advantages of homojunction and heterojunction. Therefore, it definitely improved separation efficiency of photo-induced electron-holes because of the formation of multi-junctions. In order to test the enhanced photocatalytic activity, acetaminophen was chosen as target pollutant. The sample with 67% Bi4O5I2 (TiO2-Bi4O5I2-3) presented the highest photocatalytic activity on the degradation of acetaminophen and its reaction apparent rate constant was 10 and 25 times as that of Bi4O5I2 and TiO2 biphase nanowires, respectively. Through trapping experiments and LC-MS/MS analysis, OH was proved to be the key active specie during the photocatalytic process of acetaminophen degradation. Meanwhile a possible degradation pathway was proposed based on the detected intermediate products.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据