4.7 Article

Optimization for silver remediation from aqueous solution by novel bacterial isolates using response surface methodology: Recovery and characterization of biogenic AgNPs

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 380, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.120906

关键词

Isolation; Silver remediation; Optimization by RSM; Biological AgNPs; Characterization

资金

  1. National Natural Science Foundation of China [U1632126]

向作者/读者索取更多资源

Silver is a toxic but precious heavy metal that has been implemented in diverse biomedical and environmental sectors. Extensive use of this metal has provoked severe environmental concerns. Hence there is an increasing demand for the development of a simple, inexpensive and eco-friendly approach for the remediation and recovery of silver. In this study, novel bacterial strains Enterobacter cloacae SMP1, Cupriavidus necator SMP2, and Bacillus megaterium SMP3 were isolated from silver mining site for the sake of silver remediation. Various experimental factors including temperature, pH and inoculum size (I_S) were optimized for silver remediation by SMP1 using central composite design (CCD) based on response surface methodology (RSM). For maximum 100% removal of silver the optimized values of temperature, pH and I_S were 23.5 degrees C, 7.5 and 2% (v/v) respectively in less than 10 h of incubation. Simultaneously, silver nanoparticles (AgNPs) were harvested through centrifugation (MI) and by applying voltage (M2) to the crude remediation mixture. The AgNPs, characterized by UV-vis spectroscopy, dynamic light scattering (DLS), and cryo-scanning transmission electron microscopy (Cryo-SETM), were spherical shaped and 1.75-8.7 nm in diameter. The average zeta potentials (ZP) of AgNPs isolated by M1, and M2 were -35.8 mV and -45.2 mV respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据