4.7 Article

Ciprofloxacin removal via sequential electro-oxidation and enzymatic oxidation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 389, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121890

关键词

Ciprofloxacin; Electro-oxidation; Laccase; Syringaldehyde; Wastewater

资金

  1. Natural Sciences and Engineering Research Council of Canada [355254]
  2. Natural Sciences and Engineering Research Council of Canada (NSERC Strategic Grant)
  3. James and Joanne Love Chair in Environmental Engineering

向作者/读者索取更多资源

The combination of electro-oxidation and enzymatic oxidation was tested to evaluate the potency of this system to remove ciprofloxacin (CIP), a fluoroquinolone antibiotic, from water. For the electro-oxidation boron-doped diamond (BDD) and mixed metal oxides anodes were tested, at three current densities (4.42, 17.7 and 35.4 A/cm(2)). BDD anode at 35.4 A/cm(2) exhibited the highest removal efficiency in the shortest time (> 90 % removal in 6 min). For the enzymatic oxidation, laccase from Trametes versicolor was chosen. Laccase alone was not able to remove CIP; hence the influence of redox mediators was investigated. The addition of syringaldehyde (SA) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) resulted in enhanced CIP transformation. About 48.9 +/- 4.0 % of CIP remained after 4 h of treatment when SA-mediated laccase was applied and 87.8 +/- 6.6 % in the case of ABTS-mediated laccase. The coupling of enzymatic oxidation followed by electro-oxidation led to 73 % removal of the antibiotic. Additionally, the antimicrobial activity increased up to its original efficiency after the treatment. The combination of electro-oxidation followed by enzymatic oxidation led to 97-99 % removal of CIP. There was no antimicrobial activity of the solution after the treatment. The tests with wastewater confirmed the efficacy of the system to remove CIP from the complex matrix.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据