4.7 Article

Pyrolysed waste materials show potential for remediation of trichloroethylene-contaminated water

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 390, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121909

关键词

Trichloroethylene; Biochar; Adsorption; Kinetic study; Circular economy

资金

  1. European Union [748106]
  2. Marie Curie Actions (MSCA) [748106] Funding Source: Marie Curie Actions (MSCA)

向作者/读者索取更多资源

Trichloroethylene (TCE) is an Environmental Protection Agency priority pollutant associated with cancer in humans. With numerous industrial applications and regular landfill disposal, TCE is a common landfill leachate pollutant. In situ treatment barriers use costly fill materials such as granular activated carbon (GAC). Here, we show that while a range of untreated waste materials had little ability to adsorb TCE, waste-derived biochar showed excellent capacity for TCE adsorption. TCE removal efficiencies by spruce and oak-derived biochars were > 99.5 %, outperforming GAC (95 %) and herbal pomace biochar (93 %). A contact time of at least 32 h was required to reach equilibrium for all of these media. Assessment of pollution swapping potential revealed release of phosphate by all biochars. Analysis of media surface characteristics by Fourier Transform Infrared Spectroscopy (FTIR) predicted that GAC should have the highest ability to adsorb TCE, followed by Oak Biochar, Herbal Pomace Biochar 1, and Spruce Biochar 2, which was not in agreement with the experimental adsorption data. These data demonstrate the potential for pyrolysed waste material to be used as an alternative fill material for in situ remediation applications, thereby also addressing the European Circular Economy Strategy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据