4.7 Article

Preparation of a new high-performance calcium-based desulfurizer using a steam jet mill

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 389, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121914

关键词

Dry flue gas desulfurization; Steam jet mill; Quicklime digestion; Desulfurization efficiency; Relative humidity

资金

  1. National Natural Science Foundation of China [51508481]
  2. Doctor's Fund of Southwest University of Science and Technology [14ZX7127]
  3. Department of Education, Sichuan, China [17zd1145]
  4. Key Scientific Research Platform of Southwest University of Science and Technology [14tdgk04]

向作者/读者索取更多资源

Dry flue gas desulfurization is an increasingly attractive technique in SO2 emission control. However, the low efficiency in dry desulphurization is the bottleneck of this technology. To find a high-performance desulfurizer is an urgent task. This research utilized a steam jet mill digestion to prepare a desulfurizer at steam temperature of 220 degrees C and pressure of 0.45 MPa, and compared this product with the conventional digestion desulfurizer. Our results show that the digestion in steam jet mill can transform all the calcium oxide into calcium hydroxide. The calcium hydroxide had good fluidity and with honeycomb morphological characteristics. The experiments of dry flue gas desulfurization demonstrated that under the relative humidity of 15, 30 and 45%, the total dead times were 340, 640 and 720 min, the working time for keeping a 100% desulfurization efficiency were 120, 420 and 580 min, and the total sulfur fixation were 124.05, 274.58 and 332.09 mg. Compared with the desulfurizer by conventional dry digestion, the desulfurizer prepared in this research had a significantly superior performance. This experiment provides a new method for high-performance desulfurizer via quicklime digestion, which is an important step in pushing forward the application of dry flue gas desulfurization.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据