4.7 Article

Application of vacuum-ultraviolet (VUV) for phenolic homologues removal in humic acid solution: Efficiency, pathway and DFT calculation

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 384, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121464

关键词

Phenolic homologues; Simulative natural water; Humic acid (HA); Vacuum-ultraviolet (VUV); Benzoic acid (BA)

资金

  1. Open Project of State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology [HCK201804]

向作者/读者索取更多资源

Vacuum-ultraviolet (VUV) photo-initiated oxidation of phenolic homologues in simulative natural water were investigated, including phenol, o-dihydroxybenzene (ODB), m-dihydroxybenzene (MDB), p-dihydroxybenzene (PDB), paranitrophenol (PNP) and o-chlorophenol (OCP). Results showed the phenolic homologues removal rate reached at least 90% in pure water, which was dependent on temperature, pH, concentration of HA, and functional group of HA. Experimental results indicated that 0.2 mg/L HA might be a critical point. Additionally, the rate constant of the six phenolic homologues reduced by 76.85%, 77.81%, 71.91%, 79.15%, and 55.69%, respectively in the MDB solution, and 79.73%, 82.80%, 95.36%, 80.38%, and 92.64%, respectively in the benzoic acid (BA) solution, compared to the rate constant in pure water. Moreover, quantum chemistry calculation indicated that the variances between phenolic compounds in removal rate were attributed to the substituent on the benzene ring. And, to some extent, the carboxy group of HA was supposed to arose the suppression for phenolic homologues removal rate. Mechanism involved phenolic homologues degradation using vacuum-ultraviolet (VUV) was summarized, where it underwent the formation of quinone structures, ring opening, short-chain organic acid, even eventually the transformation into NO3- and Cl- of PNP and OCP.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据