4.7 Article

Gradient and facile extraction of valuable metals from spent lithium ion batteries for new cathode materials re-fabrication

期刊

JOURNAL OF HAZARDOUS MATERIALS
卷 389, 期 -, 页码 -

出版社

ELSEVIER
DOI: 10.1016/j.jhazmat.2019.121887

关键词

Spent lithium ion batteries; Valuable metals; Gradient extraction; Closed-loop recycling; Cathode materials re-fabrication

资金

  1. National Natural Science Foundation of China [51704189]
  2. Natural Science Foundation of Shaanxi Province
  3. Natural Science Pre-research Fund of Shaanxi University of Science Technology [2016QNBJ-06]
  4. Major Science and Technology Program for Water Pollution Control and Treatment [2017ZX07602001]

向作者/读者索取更多资源

Sustainable recycling value-added metals from spent lithium-ion batteries (LIBs) has been supposed to be a promising alternative to alleviate the current environmental and resource issues. Reduced reagents consumption and closed-loop reutilization are still challenging in current prevailing recycling processes. This study proposed a novel recycling strategy involved with gradient extraction of valuable metals and closed-loop re-fabrication of cathode materials. Lithium was selectively recovered as lithium enriched lixivium in mild tartaric acidic medium with a high yield of 99.7 % and little co-extraction of transition metals (Ni, Co and Mn) under optimized leaching conditions. Then transition metals enriched residues can be completely dissolved in facile sulfuric acidic medium without the contamination of Li. Li2CO3 and ternary precursors were recovered from Li enriched lixivium and transition metal enriched lixivium, respectively. Finally, cathode materials of LiNi1/3Co1/3Mn1/3O2 are re-fabricated using obtained products to close the recycling loop. It can be concluded that it is possible for the gradient recycling of Li and transition metals based on their inherent properties with minimized consumption of acids under facile leaching conditions, which can also facilitate metals separation process for closed-looped re-fabrication of new cathode materials.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据