4.7 Article

Integrative serum metabolomics and network analysis on mechanisms exploration of Ling-Gui-Zhu-Gan Decoction on doxorubicin-induced heart failure mice

期刊

JOURNAL OF ETHNOPHARMACOLOGY
卷 250, 期 -, 页码 -

出版社

ELSEVIER IRELAND LTD
DOI: 10.1016/j.jep.2019.112397

关键词

Ling-Gui-Zhu-Gan decoction; Heart failure; Metabolomics; UHPLC-QTOF-MS; Network analysis

资金

  1. Hebei Provincal Department of Science and Technology [17392501D, 19272503D]
  2. Hebei Education Department [ZD2019070, QN2017100]
  3. Natural Science Foundation of Hebei Province [2017206261]

向作者/读者索取更多资源

Ethnopharmacological relevance: Ling-Gui-Zhu-Gan Decoction (LGZGD) formula, derived from traditional Chinese medicine (TCM), has definitive clinical efficacy in the treatment of heart failure (HF) in China. However, little is known of the underlying mechanism of LGZGD. Aim of the study: The aim of this work was to investigate the therapeutic mechanism of LGZGD on HF treatment based on an integration of the serum metabolomics and network analysis. Materials and methods: HF model mice were established by intraperitoneal injecting of doxorubicin. Body weight, echocardiography, biochemical assay and hematoxylin and eosin staining experiments were used to evaluate the efficacy of LGZGD. A metabolomics approach based on ultra-high-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UHPLC-QTOF-MS) was performed to analyze the serum biomarkers from model group, control group and LGZGD-treatment group. Principle component analysis (PCA) and orthogonal projection to latent structures-discriminant analysis (OPLS-DA) were utilized to identify differences of metabolic profiles in mice among the three groups. The network of gene-enzyme-metabolite was built to investigate the possible mechanism of LGZGD from the systematic perspective. Results: 54 metabolites, which showed a significantly restoring trend from HF to normal condition, were regarded as potential biomarkers of LGZGD treatment. The most critical pathway was glycerophospholipid metabolism and arachidonic acid metabolism. According to the results of network analysis, 8 biomarkers were regarded as hub metabolites, which meant these metabolites may have a major relationship with the LGZGD therapeutic effects for the HF. 8 enzymes and 29 genes in the network were considered as potential targets of LGZGD treatment. Conclusions: By integrated serum metabolomic and network analysis, we found that LGZGD might retard the pathological process of HF by regulating the disturbed metabolic pathways and the relative enzymes, which may be potential mechanism for LGZGD in the treatment of HF.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据