4.2 Article

The impact of UV treatment on microbial control and DBPs formation in full-scale drinking water systems in northern China

期刊

JOURNAL OF ENVIRONMENTAL SCIENCES
卷 87, 期 -, 页码 398-410

出版社

SCIENCE PRESS
DOI: 10.1016/j.jes.2019.08.003

关键词

UV treatment; Bacterial community; Disinfection by-products (DBPs); Multi-barrier disinfection; Municipal drinking water systems

资金

  1. National Natural Science Foundation of China [51778323, 51761125013, 51290284]
  2. National Science and Technology Major Project of China [2012ZX07404-002, 2017ZX07108-003, 2017ZX07502-003]

向作者/读者索取更多资源

To manage potential microbial risks and meet increasingly strict drinking water health standards, UV treatment has attracted increasing attention for use in drinking water systems in China. However, the effects of UV treatment on microbial control and disinfection by-products (DBPs) formation in real municipal drinking water systems are poorly understood. Here, we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbial control and DBP formation. We employed heterotrophic plate count (HPC), flow cytometry (FCM), quantitative PCR analysis, and high-throughput sequencing to measure microorganisms in the samples. Different trends were observed between HPC and total cell count (measured by FCM), indicating that a single indicator could not reflect the real degree of biological re-growth in drinking water distribution systems (DWDSs). A significant increase in the 16S rRNA gene concentration was observed when the UV system was stopped. Besides, the bacterial community composition was similar at the phylum level but differed markedly at the genera level among the three DWDSs. Some chlorine-resistant bacteria, including potential pathogens (e.g., Acinetobacter) showed a high relative abundance when the UV system was turned off. It can be concluded that UV treatment can mitigate microbial re-growth to some extent. Finally, UV treatment had a limited influence on the formation of DBPs, including trihalomethanes, haloacetic acids, and nitrogenated DBPs. The findings of this study may help to understand the performance of UV treatment in real drinking water systems. (c) 2019 The Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences. Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据