4.7 Review

Recent advances of SBA-15-based composites as the heterogeneous catalysts in water decontamination: A mini-review

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 254, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.109787

关键词

X@SBA-15; Heterogeneous catalysts; Pollution remediation; Hydroxyl radical; Sulfate radical

资金

  1. National Natural Science Foundation of China [51778082]
  2. Sponge City Special Research of Wanzhou District [SW-2017-064]

向作者/读者索取更多资源

As an emerging class of silica-based mesoporous materials with incorporation of active components (e.g., transition metals/metal oxides and nanocarbons), SBA-15-based composites (X@SBA-15) have been attracting increasing attention in the field of water treatment owing to their unique characteristics and excellent remediation performance. This paper reviews recent advances in catalytic applications of X@SBA-15 to remove organic contaminants from water. Emphasis is made on the use of X@SBA-15 in four advanced oxidation processes (AOPs) (Le., photocatalysis, Fenton-like oxidation, catalytic ozonation, and sulfate radical-based oxidation). Impregnation and hydrothermal methods are two most widely used synthetic approaches to combine the active composites with SBA-15, obtaining a synergistic effect with significant improvement in their individual catalytic activity for pollution remediation. The enhanced generation of highly reactive hydroxyl radicals from the surface of X@SBA-15 was widely recognized as being responsible for water decontamination using these AOPs, while sulfate radicals were also involved during activation of persulfate or peroxymonosulfate. Especially, X@SBA-15 could significantly enhance the light harvest and reduce the recombination of photo-induced electrons and holes during photocatalytic treatment, which also played the critical role in oxidizing the organics. The superior catalytic performance of X@SBA-15 without leaching metal ions during successive runs demonstrated the excellent reusability and structural stability. Together with the reduced toxicity of the treated solutions and the cost-effective characteristics of X@SBA-15 nanohybrids reported in the published literature, their great potential as the efficient and environmentally friendly heterogeneous catalysts in a real use scenario is suggested. Finally, the future perspectives on the development and practical utilization of X@SBA-15 are addressed.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据