4.7 Article

Biogas production estimation using data-driven approaches for cold region municipal wastewater anaerobic digestion

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 253, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.109708

关键词

Municipal wastewater; Anaerobic digester; Principal component analysis (PCA); Artificial neural network (ANN); Adaptive network-based fuzzy inference system (ANFIS)

资金

  1. NSERC
  2. College of Graduate and Postdoctoral Studies, the University of Saskatchewan

向作者/读者索取更多资源

The objective of this study was to estimate biogas (including methane, carbon dioxide and hydrogen sulphide) production rates from the anaerobic digesters at the Saskatoon Wastewater Treatment Plant (SWTP), Saskatchewan, Canada. Average daily ambient temperatures typically fluctuate between -40 degrees C and 30 degrees C over the year making the management of the SWTP processes challenging. Operating parameters were taken from 2014 to 2016 including volatile fatty acids (VFAs), total solids, fixed solids, volatile solids, pH, and inflow rate. The input parameters were processed using two methods including a correlation test and principal component analysis (PCA) to determine highly correlated variables prior to use in models. The two models used to estimate biogas production rates are a multi-layered perceptron feed forward artificial neural network (ANN) and an adaptive network-based fuzzy inference system (ANFIS) with grid partition (GP), subtractive clustering (SC) and fuzzy c-means clustering (FCMC). The models using PCA processed variables had reasonable performances with shorter model processing times, while reducing model input data. Among various structures of ANN and ANFIS models for estimation of biogas generation, the ANFIS-FCMC results had better agreement with the observed data. Its average approximation of emission rates of CH4, CO2 and H2S from the wastewater digesters were 3,086, 6,351, and 41.5 g/min, respectively. Our group is assessing similar estimation methodology for the remaining SWTP wastewater treatment processes that are more highly impacted by the seasonal temperature variations including primary and secondary treatment processes.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据