4.7 Article

Simultaneous decarburization, nitrification and denitrification (SDCND) in coking wastewater treatment using an integrated fluidized-bed reactor

期刊

JOURNAL OF ENVIRONMENTAL MANAGEMENT
卷 252, 期 -, 页码 -

出版社

ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD
DOI: 10.1016/j.jenvman.2019.109661

关键词

Coking wastewater; Integrated fluidized-bed reactor; Carbon and nitrogen removal; Differential DO distribution; Microbial community

资金

  1. State Program of the National Natural Science Foundation of China [51778238]
  2. Program for Science and Technology of Guangdong Province, China [2017A020216001, 20158020235005]

向作者/读者索取更多资源

There are two problems in biological treatment of coking wastewater (CWW): incapability of pre-anaerobic treatment to eliminate the toxicity in wastewater, and the lack of carbon source for subsequent denitrification in pre-aerobic treatment. To achieve simultaneous decarburization, nitrification and denitrification (SDCND) in CWW treatment, biological carrier materials was used to build an integrated fluidized-bed reactor (Reactor B, RB). A conventional fluidized-bed reactor (Reactor A, RA) was used as a control reactor under the same condition. The results showed that RB was more advantageous since its removal efficiencies of COD and TN were 90% and 87%, respectively, which were significantly higher than these in RA (82% and 45%), at a hydraulic retention time (HRT) of 60 h. Microelectrode measurement indicated that oxygen transfer was limited inside the carrier where the formation of a dissolved oxygen (DO) concentration gradient was observed. Microbial community analysis showed that the aerobic and anoxic microenvironments in RB promoted the co-existence of a wider variety of bacteria, thus achieving SDCND. These results indicated the integrated fluidized-bed reactor exhibited promising feasibility for simultaneous carbon and nitrogen removal in CWW treatment under the same aeration driven conditions. The SDCND process realized by fluidized-bed reactor provided a reference for the treatment of toxic industrial wastewater with high carbon to nitrogen ratio.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据