4.7 Article

Sex-Based Diverse Plaque Microbiota in Children with Severe Caries

期刊

JOURNAL OF DENTAL RESEARCH
卷 99, 期 6, 页码 703-712

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034520908595

关键词

dental caries; preschool; human microbiome; fungi; bacteria; machine learning

资金

  1. Children's Hospital Research Institute of Manitoba
  2. Canadian Institute of Health Research
  3. Research Manitoba/Children's Hospital Research Institute of Manitoba
  4. University of Manitoba Graduate Fellowship

向作者/读者索取更多资源

Severe early childhood caries (S-ECC) is a multifactorial disease that can lead to suffering and reduced oral health-related quality of life in young children. The bacterial and fungal composition of dental plaque and how children's sex is associated with S-ECC are largely unknown. In this study, V4-16S rRNA and ITS1 rRNA gene amplicon sequencing was used to compare the plaque bacteriome and mycobiome of children <72 mo of age: 40 with S-ECC (15 males, 25 females) and 40 caries-free (19 males, 21 females). Health- and nutrition-related questionnaire data were also investigated. This study aimed to analyze potential sex-based differences in the supragingival plaque microbiota of young children with S-ECC and those caries-free. Behavioral and nutritional habit differences were observed between children with S-ECC and those caries-free and between male and female children. Overall, higher levels of Veillonella dispar, Streptococcus mutans, and other bacterial species were found in the S-ECC group as compared with caries-free controls (P < 0.05). A significant difference in the abundance of Neisseria was observed between males and females with S-ECC (P < .05). Fungal taxonomic analysis showed significantly higher levels of Candida dubliniensis in the plaque of children with S-ECC as compared with those caries-free (P < 0.05), but no differences were observed with Candida albicans (P > 0.05). Significant differences in the relative abundance of Mycosphaerella, Cyberlindnera, and Trichosporon fungal species were also observed between the caries-free and S-ECC groups (P < 0.05). Machine learning analysis revealed the most important bacterial and fungal species for classifying S-ECC versus caries-free. Different patterns of crosstalk between microbial species were observed between male and female children. Our work demonstrates that plaque microbiota and sex may be important determinants for S-ECC and could be factors to consider for inclusion in caries risk assessment tools.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据