4.7 Article

VE-Cadherin and Anastomosis of Blood Vessels Formed by Dental Stem Cells

期刊

JOURNAL OF DENTAL RESEARCH
卷 99, 期 4, 页码 437-445

出版社

SAGE PUBLICATIONS INC
DOI: 10.1177/0022034520902458

关键词

mesenchymal stem cells; regeneration; vascular; endothelial cells; gene silencing; dental pulp

资金

  1. National Institutes of Health/National Institute of Dental and Craniofacial Research [RO1-DE021410]
  2. JSPS Overseas Research Fellowship [479H27]

向作者/读者索取更多资源

It is known that dental pulp stem cells (DPSCs) can be induced to differentiate into vasculogenic endothelial (VE) cells. However, the process that results in sprouting and anastomosis of DPSC-derived vessels remains unclear. Here, we performed studies to understand the mechanisms underpinning the anastomosis of the host vasculature with blood vessels generated by DPSCs (a model for mesenchymal stem cells). VE-cadherin-silenced primary human DPSCs seeded in tooth slice/scaffolds and transplanted into the subcutaneous space of immunodeficient mice generated fewer functional blood vessels (i.e., anastomosed with the host vasculature) than control DPSCs transduced with scrambled sequences. Both VE-cadherin-silenced and mitogen-activated protein kinase kinase 1 (MEK1)-silenced cells showed a decrease in the number of capillary sprouts in vitro. Interestingly, DPSC stably transduced with a VE-cadherin reporter demonstrated that vascular endothelial growth factor (VEGF) induces VE-cadherin expression in sprouting DPSCs undergoing anastomosis, but not in quiescent DPSCs. To begin to understand the mechanisms regulating VE-cadherin, we stably silenced MEK1 and observed that VEGF was no longer able to induce VE-cadherin expression and capillary sprout formation. Notably ERG, a transcriptional factor downstream from MEK/ERK, binds to the promoter region of VE-cadherin (chip assay) and is induced by VEGF in DPSCs. Collectively, these data defined a signaling pathway triggered by VEGF that results in phosphorylation of MEK1/ERK and activation of ERG leading to expression of VE-cadherin, which is required for anastomosis of DPSC-derived blood vessels. In conclusion, these results unveiled a signaling pathway that enables the generation of functional blood vessels upon vasculogenic differentiation of DPSCs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据