4.7 Article

Simplified mitral valve modeling for prospective clinical application of left ventricular fluid dynamics

期刊

JOURNAL OF COMPUTATIONAL PHYSICS
卷 398, 期 -, 页码 -

出版社

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.jcp.2019.108895

关键词

Biofluid dynamics; Cardiovascular flow; Immersed boundary methods; Computational fluid dynamics; Fluid-structure interaction

向作者/读者索取更多资源

The fluid dynamics inside the left ventricle of the human heart is considered a potential indicator of long term cardiovascular outcome. In this respect, numerical simulations can play an important role for integrating existing technology to reproduce flow details and even conditions associated to virtual therapeutic solutions. Nevertheless, numerical models encounter serious practical difficulties in describing the interaction between flow and surrounding tissues due to the limited information inherently available in real clinical applications. This study presents a computational method for the fluid dynamics inside the left ventricle designed to be efficiently integrated in clinical scenarios. It includes an original model of the mitral valve dynamics, which describes an asymptotic behavior for tissues with no elastic stiffness other than the constrain of the geometry obtained from medical imaging; in particular, the model provides an asymptotic description without requiring details of tissue properties that may not be measurable in vivo. The advantages of this model with respect to a valveless orifice and its limitations with respect to a complete tissue modeling are verified. Its performances are then analyzed in details to ensure a correct interpretation of results. It represents a potential option when information about tissue mechanical properties is insufficient for the implementations of a full fluid-structure interaction approach. (C) 2019 Elsevier Inc. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据