4.7 Article

Balanced Amino-Acid-Specific Molecular Dynamics Force Field for the Realistic Simulation of Both Folded and Disordered Proteins

期刊

JOURNAL OF CHEMICAL THEORY AND COMPUTATION
卷 16, 期 2, 页码 1311-1318

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jctc.9b01062

关键词

-

资金

  1. U.S. National Science Foundation [MCB-1715505]

向作者/读者索取更多资源

Molecular dynamics (MD) simulations provide a unique atomic-level description of the structure and dynamics of proteins, which is essential for the mechanistic understanding of protein interactions and function in living organisms. However, traditional MD force fields that are optimized for folded proteins often generate overly compact structures and incorrect characteristics of intrinsically disordered proteins (IDPs) and protein regions (IDRs), thereby limiting the quantitative insights that can be gained from MD simulations. We introduce the residue-specific protein force field, ff99SBnmr2, which is derived from ff99SBnmr1 by balancing the backbone dihedral angle potentials in a residue-specific manner to quantitatively reproduce dihedral angle distributions from an experimental coil library. The new force field substantially improves the backbone conformational ensembles of disordered proteins, protein regions, and peptides while keeping well-defined protein structures stable and accurate. This balanced new force field should enable a myriad of applications that require quantitative descriptions of IDPs, IDRs, loop dynamics, and folding/unfolding equilibria in the presence and absence of interaction partners.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据