4.7 Article

Improved description of hematite surfaces by the SCAN functional

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 152, 期 2, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5134951

关键词

-

资金

  1. National Natural Science Foundation of China [51876173]
  2. Natural Science Foundation of Jiangsu Province [BK20190054]
  3. Shaanxi Technical Innovation Guidance Project [2018HJCG-14]
  4. Natural Science Basic Research Plan in Shaanxi Province of China [2019JM-400]
  5. China Fundamental Research Funds for the Central Universities
  6. U.S. Department of Energy [DE-SC0014429]

向作者/读者索取更多资源

Controversies on the surface termination of alpha-Fe2O3 (0001) focus on its surface stoichiometry dependence on the oxygen chemical potential. Density functional theory (DFT) calculations applying the commonly accepted Perdew-Burke-Ernzerhof (PBE) exchange-correlation functional to a strongly correlated system predict the best matching surface termination, but would produce a delocalization error, resulting in an inappropriate bandgap, and thus are not applicable for comprehensive hematite system studies. Besides, the widely applied PBE+U scheme cannot provide evidence for existence of some of the successfully synthesized stoichiometric alpha-Fe2O3 (0001) surfaces. Hence, a better scheme is needed for hematite DFT studies. This work investigates whether the strongly constrained and appropriately normed (SCAN) approximation reported by Perdew et al. could provide an improved result for the as-mentioned problem, and whether SCAN can be applied to hematite systems. By comparing the results calculated with the PBE, SCAN, PBE+U, and SCAN+U schemes, we find that SCAN and SCAN+U improves the description of the electronic structure of different stoichiometric alpha-Fe2O3 (0001) surfaces with respect to the PBE results, and that they give a consistent prediction of the surface terminations. Besides, the bulk lattice constants and the bulk density of states are also improved with the SCAN functional. This study provides a general characterization of the alpha-Fe2O3 (0001) surfaces and rationalizes how the SCAN approximation improves the results of hematite surface calculations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据