4.7 Article

Viscosity Prediction of Lubricants by a General Feed-Forward Neural Network

期刊

JOURNAL OF CHEMICAL INFORMATION AND MODELING
卷 60, 期 3, 页码 1224-1234

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jcim.9b01068

关键词

-

资金

  1. A*STAR under its Specialty Chemicals AME IAF-PP Programme [A1786a0026]

向作者/读者索取更多资源

Modern industrial lubricants are often blended with an assortment of chemical additives to improve the performance of the base stock. Machine learning-based predictive models allow fast and veracious derivation of material properties and facilitate novel and innovative material designs. In this study, we outline the design and training process of a general feed-forward artificial neural network that accurately predicts the dynamic viscosity of oil-based lubricant formulations. The network hyperparameters are systematically optimized by Bayesian optimization, and strongly correlated/collinear features are trimmed from the model. By harnessing domain knowledge in the selection of features, the quantitative structure-property relationship model is built with a relatively simple feature set and is versatile in predicting the dynamic viscosity of lubricant oils with and without enhancement by viscosity modifiers (VMs). Moreover, partial dependency, local-interpretable model-agnostic explanations, and Shapley values consistently show that the eccentricity index, Crippen MR, and Petitjean number are important predictors of viscosity. All in all, the neural model is reasonably accurate in predicting the dynamic viscosity of lubricant solvents and VM-enhanced lubricants with an R-2 of 0.980 and 0.963, respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据