4.5 Article

Accelerating itaconic acid production by increasing membrane permeability of whole-cell biocatalyst based on a psychrophilic bacterium Shewanella livingstonensis Ac10

期刊

JOURNAL OF BIOTECHNOLOGY
卷 312, 期 -, 页码 56-62

出版社

ELSEVIER
DOI: 10.1016/j.jbiotec.2020.03.003

关键词

Heat treatment; Itaconic acid; Membrane permeability; Psychrophile; Shewanella livingstonensis

资金

  1. JSPS KAKENHI [JP17K06927]

向作者/读者索取更多资源

Whole-cell biocatalysts have numerous advantages including ease of preparation and coenzyme recovery over purified industrially used enzymes. However, the cell membrane can occasionally hinder cytoplasmic diffusion of the substrate, resulting in reduced biotransformation efficiency. Psychrophiles can grow and reproduce at low temperatures; their cell membranes are highly flexible, and their permeability can be improved via heat treatment at a moderate temperature. The aim of this study was to generate a psychrophile-based simple biocatalyst (PSCats) using Shewanella livingstonensis Ac10. This biocatalyst contained two enzymes that were heterologously expressed and converted citric acid to itaconic acid, thereby serving as a potential platform replacing the petroleum-based counterparts. The efficiency of the biocatalyst was increased via heat treatment at 45 degrees C for 15 min, and itaconic acid productivity of the cells after heat treatment (1.41 g/L/h) was increased around 6-fold in comparison with those without heat treatment (0.22 g/L/h). A large part of the productivity remained (67.3 %) when the cells were reused for 5 times (10 h for each reaction). Therefore, the potential of this heat-permeabilized psychrophile host to increase the productivity of whole-cell biocatalyst was proved; however, further research is necessary to understand the underlying mechanism.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据