4.5 Article

Self-healing injectable gelatin hydrogels for localized therapeutic cell delivery

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 108, 期 5, 页码 1112-1121

出版社

WILEY
DOI: 10.1002/jbm.a.36886

关键词

cell delivery; guest-host complexation; hydrogel; injectable; shear-thinning

资金

  1. Fulbright Association
  2. National Institutes of Health [T32EB001650]

向作者/读者索取更多资源

Self-healing injectable hydrogel biomaterials uniquely enable precise therapeutic deposition and deployment at specific bodily locations through versatile and minimally invasive processes that can preserve cargo integrity and cell viability. Despite the distinct advantages that injectable hydrogels offer in tissue engineering and therapeutic delivery, exceptionally few have been created using components naturally present in the cellular niche. In this work, we introduce a shear-thinning hydrogel based on guest-host complexation of gelatin. As a biocompatible, biodegradable, and nonimmunogenic biopolymer derived from the most abundant extracellular matrix protein (collagen), gelatin offers great utility as the structural component of biomaterials. Taking advantage of reversible guest-host interactions between beta-cyclodextrin (CD) and adamantane (AD) on modified gelatins, we report the first strategy to afford a self-healing material based solely on a functionalized extracellular matrix protein. By varying the initial material formulation, hydrogels were synthesized with variable moduli and shear-thinability across a broad range. Gels were demonstrated to exhibit shear-thinning and self-healing properties, supporting protection of clinically relevant stem-cell-derived cardiomyocytes during injection. These materials are expected to expand clinical opportunities in cell delivery for in vivo tissue regeneration.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据