4.2 Article

A Recruitment Model of Tendon Viscoelasticity That Incorporates Fibril Creep and Explains Strain-Dependent Relaxation

出版社

ASME
DOI: 10.1115/1.4045662

关键词

-

资金

  1. EPSRC [EP/L017997/1, EP/L018039/1]
  2. School of Mathematics at the University of Manchester (MAPLE Platform Grant ) [EP/I01912X/1]
  3. Royal Society
  4. EPSRC/UKRI [EP/R014604/1]
  5. EPSRC [EP/R014604/1, EP/I01912X/1, EP/L018039/1, EP/L017997/1, EP/K032208/1] Funding Source: UKRI

向作者/读者索取更多资源

Soft tissues exhibit complex viscoelastic behavior, including strain-rate dependence, hysteresis, and strain-dependent relaxation. In this paper, a model for soft tissue viscoelasticity is developed that captures all of these features and is based upon collagen recruitment, whereby fibrils contribute to tissue stiffness only when taut. We build upon existing recruitment models by additionally accounting for fibril creep and by explicitly modeling the contribution of the matrix to the overall tissue viscoelasticity. The fibrils and matrix are modeled as linear viscoelastic and each fibril has an associated critical strain (corresponding to its length) at which it becomes taut. The model is used to fit relaxation tests on three rat tail tendon fascicles and predict their response to cyclic loading. It is shown that all of these mechanical tests can be reproduced accurately with a single set of constitutive parameters, the only difference between each fascicle being the distribution of their fibril crimp lengths. By accounting for fibril creep, we are able to predict how the fibril length distribution of a fascicle changes over time under a given deformation. Furthermore, the phenomenon of strain-dependent relaxation is explained as arising from the competition between the fibril and matrix relaxation functions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.2
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据