4.5 Article

LncRNA MST1P2/miR-133b axis affects the chemoresistance of bladder cancer to cisplatin-based therapy via Sirt1/p53 signaling

出版社

WILEY
DOI: 10.1002/jbt.22452

关键词

bladder cancer; chemoresistance; cisplatin; miR-133b; Sirt1; p53 signaling

资金

  1. Natural Science Foundation of Hunan Province [2017JJ3108, 2017JJ3174]
  2. Foundation of Changsha Science and Technology Bureau [kq1901061]

向作者/读者索取更多资源

Although bladder cancer is commonly chemosensitive to standard first-line therapy, the acquisition of the resistance to cisplatin (DDP)-based therapeutic regimens remains a huge challenge. Noncoding RNAs (ncRNAs), including long noncoding RNAs (lncRNAs) and microRNAs, have been reported to play a critical role in cancer resistance to DDP. Here, we attempted to provide a novel mechanism by which the resistance of bladder cancer to DDP treatment could be modulated from the perspective of ncRNA regulation. We demonstrated that lncRNA MST1P2 (lnc-MST1P2) expression was dramatically upregulated, whereas miR-133b expression was downregulated in DDP-resistant bladder cancer cell lines, SW 780/DDP and RT4/DDP. Lnc-MST1P2 and miR-133b negatively regulated each other via targeting miR-133b. Both lnc-MST1P2 silence and miR-133b overexpression could resensitize DDP-resistant bladder cancer cells to DDP treatment. More important, miR-133b could directly target the Sirt1 3 '-untranslated region to inhibit its expression. Inc-MST1P2/miR-133b axis affected the resistance of bladder cancer cells to DDP via Sirt1/p53 signaling. In conclusion, MST1P2 serves as a competing endogenous RNA for miR-133b to counteract miR-133b-induced suppression on Sirt1, therefore enhancing the resistance of bladder cancer cells to DDP. MST1P2/miR-133b axis affects the resistance of bladder cancer cells to DDP via downstream Sirt1/p53 signaling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据