4.6 Article

Electric field-induced strain in Sr(Hf0.5Zr0.5)O3-modified Bi0.5(Na0.8K0.2)0.5TiO3 piezoelectric ceramics

期刊

JOURNAL OF APPLIED PHYSICS
卷 127, 期 7, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5132536

关键词

-

资金

  1. Xaar plc (Cambridge, UK)

向作者/读者索取更多资源

Lead-free Sr(Hf0.5Zr0.5)O-3-modified Bi-0.5(Na0.8K0.2)(0.5)TiO3 (SHZ-BNKT) ceramics were synthesized using a conventional solid-state, mixed-oxide method. In complex solid solutions such as BNKT, the role of a ternary additive is important because it can break up the long-range dipole order, which destabilizes the ferroelectric phase leading to relaxor behavior. In this system, as verified by x-ray diffraction, SHZ was incorporated into the BNKT perovskite lattice throughout the studied compositional range. The coexistence of tetragonal and rhombohedral phase was observed for x=0.00 and with the addition of SHZ, a transition to pseudocubic symmetry was observed, which is indicative of the onset of relaxor behavior. To characterize the relaxor properties of the material, the polarization-electric field hysteresis, dielectric, and electric-field-induced strain behaviors were studied as a function of composition. The temperature-dependent dielectric spectra showed frequency dependence for all the SHZ-modified BNKT ceramics, which is a typical characteristic of relaxor ferroelectrics. Furthermore, constriction in polarization loops and an absence of negative strain in the bipolar strain measurement for SHZ-modified BNKT compositions confirms that the addition of SHZ significantly disrupts the ferroelectric order. The addition of 2mol.% SHZ in BNKT markedly enhanced the electric field-induced strain from 0.10% (for pure BNKT) to 0.33% (for 2% SHZ-BNKT). The corresponding normalized strain coefficient (d(33) = S-max/E-max) increased from 196pm/V to 663pm/V at a moderate electric field of 50kV/cm. These results indicate that BNKT-SHZ ceramics can be designed for an improved strain response via a cation substitution-induced relaxor state for electromechanical actuator applications. Published under license by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据