4.7 Article

Facile one-step hydrothermal synthesis of SnO2 microspheres with oxygen vacancies for superior ethanol sensor

期刊

JOURNAL OF ALLOYS AND COMPOUNDS
卷 814, 期 -, 页码 -

出版社

ELSEVIER SCIENCE SA
DOI: 10.1016/j.jallcom.2019.152266

关键词

SnO2 microspheres; Hydrothermal synthesis; Oxygen vacancy; Ethanol gas sensor; Microsphere growth mechanism

资金

  1. Foundation of Shaanxi University of Science Technology [2017GBJ-03]

向作者/读者索取更多资源

This work reports a facile one-step hydrothermal method to synthesize the microsphere SnO2 particles without using any organic agent. The experiment results show that the obtained SnO2 microspheres consisting number of nanocrystalline particles of 2-5 nm in size. Oxygen vacancies are also existing on the surface of the SnO2 microspheres. The as-prepared SnO2 microspheres possess mesoporous structure of remarkably high specific surface area (111.27 m(2)g(-1)). The gas sensing properties of the as-prepared SnO2 microspheres for ethanol was investigated. The response and recovery time of SnO2 sensor surprisingly reached to 3 s and 24 s respectively under 100 ppm flow of ethanol at an operating working temperature of 230 degrees C. The response of sensor for 100 ppm of ethanol is enhanced to 24.9 at 230 degrees C. The excellent ethanol-sensing performance of the fabricated sensor has been attributed to its small grain size, high specific surface area and number of oxygen vacancies of SnO2. These results indicating that the SnO2 microspheres obtained in this work is a promising and excellent ethanol-sensor material. (C) 2019 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据