4.7 Article

All-sky longwave downward radiation from satellite measurements: General parameterizations based on LST, column water vapor and cloud top temperature

期刊

出版社

ELSEVIER
DOI: 10.1016/j.isprsjprs.2020.01.011

关键词

Surface longwave downward radiation; Land surface temperature; Column water vapor; Cloud-top temperature; CERES; Cloudy-sky

资金

  1. National key research and development program of China [2018YFA0605401]
  2. National Natural Science Foundation of China [41571364, 41771387]
  3. Key Research and Development Program of Ningxia province of China [2018BFH03004]

向作者/读者索取更多资源

Remotely sensed surface longwave downward radiation (LWDR) plays an essential role in studying the surface energy budget and greenhouse effect. Most existing satellite-based methods or products depend on variables that are not readily available from space such as, liquid water path, air temperature, vapor pressure and/or cloud-base temperature etc., which seriously restrict the wide applications of satellite data. In this paper, new nonlinear parameterizations and a machine learning-based model for deriving all-sky LWDR are proposed based only on land surface temperature (LST), column water vapor and cloud-top temperature (CTT), that are relatively readily available day and night for most satellite missions. It is the first time to incorporate the CTT in the parameterizations for estimating LWDR under the cloudy-sky conditions. The results reveal that the new models work well and can derive all-sky global LWDR with reasonable accuracies (RMSE < 23 W/m(2), bias < 2.0 W/m(2)). The convenience of input data makes the new models easy to use, and thus will definitely expand the applicability of remotely sensed measurements in radiation budget fields and many land applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据