4.7 Article

Pool boiling heat transfer characteristics of iron oxide nano-suspension under constant magnetic field

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2019.106131

关键词

Pool boiling; Magnetic field; Critical heat flux; Fouling mitigation; Bubble formation

向作者/读者索取更多资源

In this paper, we quantified the heat transfer coefficient (HTC) of Fe3O4 aqueous nano-suspension at various mass concentrations of 0.05% 0.2%. The potential role of operating parameters including heat flux perpendicular to the surface (HF), concentration of the nanoparticle (NP), strength of magnetic field (MF), zeta potential and concentration of a specific surfactant on HTC, critical heat flux (CHF) and transient fouling resistance of the surface was identified. Results showed that MF can lower the fouling resistance providing that the nanosuspension is stable. It was shown that in this case, the HTC value was also promoted. However, the enhancement of HTC strongly depended on the zeta potential value. Likewise, by increasing the NP concentration, the CHF value was augmented, while the HTC was promoted u to wt. % = 0.15 and then decreased at wt. % = 0.2. This behavior was attributed to the existence of a thermal resistance on the surface. Notably, the bubble formation on the surface was intensified due to the MF, which was attributed to the formation of irregularities and micro-cavities due to the deposition of the NPs.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据