4.7 Article

Outlining the impact of induced magnetic field and thermal radiation on magneto-convection flow of dissipative fluid

期刊

出版社

ELSEVIER FRANCE-EDITIONS SCIENTIFIQUES MEDICALES ELSEVIER
DOI: 10.1016/j.ijthermalsci.2019.106101

关键词

Induced magnetic field; Mixed convection; Spectral quasilinearization method (SQLM)

向作者/读者索取更多资源

In order to deal with many scientific and technological problems such as solar dynamo and planetary problems, magnetohydrodynamics power-generation, plasma confinement, crude oil purification and rotating magnetic stars, we have investigated the steady flow of incompressible, viscous, conducting and optically thin fluid over a vertical plate with magnetohydrodynamic mixed convection, thermal radiation and viscous dissipation. The solution of governing partial differential equations is obtained by the spectral quasi-linearization method. Apart from finding solution for the induced magnetic field, velocity, and temperature, we have plotted graphs of skin friction and heat transfer coefficients for different pertinent parameters which are mentioned thereat. Results indicate that viscous dissipation has tendency to increase the temperature, induced magnetic field and velocity profiles whereas radiation parameter has opposite effect on it. Viscous dissipation and thermal buoyancy force tend to enhance the skin friction and reduce heat transfer coefficient. However, radiation parameter reduces skin friction and enhances heat transfer coefficient at the surface.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据