4.7 Article

Hydrophilic excipients in digital light processing (DLP) printing of sustained release tablets: Impact on internal structure and drug dissolution rate

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijpharm.2019.118790

关键词

Three-dimensional (3D) printing; Digital Light Processing (DLP); Photopolymerization; Sustained release

资金

  1. Ministry of Education, Science and Technological Development, Republic of Serbia [34007]

向作者/读者索取更多资源

Three-dimensional (3D) printing enables the production of different objects adjusted for the specific application, which has particular importance of providing personalized therapy, whereby the challenge is to apply pharmaceutical materials into 3D printing technology. In this study, effect of poly(ethylene glycol) 400 (PEG 400), sodium chloride (NaCl), and mannitol, as hydrophilic excipients, was investigated in order to overcome very slow and incomplete drug release from tablets (printlets) fabricated by photopolymerization using digital light processing (DLP) technology. Paracetamol (acetaminophen) was used as a model drug, while polyethylene glycol diacrylate (PEGDA) was used as a photopolymer and diphenyl (2,4,6-trimethylbenzoyl) phosphine oxide as a photoinitiator in photoreactive mixtures. Most of printlet formulations exhibit sustained release over 8 h, wherein drug release kinetics is the best described with Korsmeyer-Peppas kinetics. Variation in the content of photopolymer and excipients had an influence on the dissolution rate, mechanical characteristics, and internal structure of the investigated samples. The addition of hydrophilic polymers increased drug release rate, while PEGDA had the greatest influence on the tensile strength of printlets. The results indicate the possibility of implementation of traditional excipients into different formulations for photopolymerization based 3D printing for the production of small batches of tablets with tailored drug release.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据