4.7 Article

Olfactory EEG Signal Classification Using a Trapezoid Difference-Based Electrode Sequence Hashing Approach

期刊

出版社

WORLD SCIENTIFIC PUBL CO PTE LTD
DOI: 10.1142/S0129065720500112

关键词

Olfactory EEG; classification; right-angled trapezoid differences; trapezoid difference-based electrode sequence hashing approach; feature optimization

资金

  1. National Natural Science Foundation of China [61573253]
  2. National Key R&D Program of China [2017YFC0306200]

向作者/读者索取更多资源

Olfactory-induced electroencephalogram (EEG) signal classification is of great significance in a variety of fields, such as disorder treatment, neuroscience research, multimedia applications and brain-computer interface. In this paper, a trapezoid difference-based electrode sequence hashing method is proposed for olfactory EEG signal classification. First, an N-layer trapezoid feature set whose size ratio of the top, bottom and height is 1:2:1 is constructed for each frequency band of each EEG sample. This construction is based on N optimized power-spectral-density features extracted from N real electrodes and N nonreal electrode's features. Subsequently, the N real electrodes' sequence (ES) codes of each layer of the constructed trapezoid feature set are obtained by arranging the feature values in ascending order. Finally, the nearest neighbor classification is used to find a class whose ES codes are the most similar to those of the testing sample. Thirteen-class olfactory EEG signals collected from 11 subjects are used to compare the classification performance of the proposed method with six traditional classification methods. The comparison shows that the proposed method gives average accuracy of 94.3%, Cohen's kappa value of 0.94, precision of 95.0%, and F1-measure of 94.6%, which are higher than those of the existing methods.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据