4.7 Article

Multifocal Signal Modulation Therapy by Celecoxib: A Strategy for Managing Castration-Resistant Prostate Cancer

期刊

出版社

MDPI
DOI: 10.3390/ijms20236091

关键词

celecoxib; signaling; castration-resistant prostate cancer; ErbB family; inflammation; apoptosis

资金

  1. Ministero fondo 5 x 1000 Enti della Ricerca Sanitaria 2014
  2. Ministero fondo 5 x 1000 Enti della Ricerca Sanitaria 2015
  3. Ministero fondo 5 x 1000 Enti della Ricerca Sanitaria 2016

向作者/读者索取更多资源

Background: Prostate cancer (PCa) is a significant health concern throughout the world. Standard therapy for advanced disease consists of anti-androgens, however, almost all prostate tumors become castration resistant (CRPC). Progression from androgen-sensitive PCa to CRPC is promoted by inflammatory signaling through cyclooxygenase-2 (COX-2) expression and ErbB family receptors/AKT activation, compensating androgen receptor inactivity. Methods: Making use of CRPC cell lines, we investigated the effects of the anti-inflammatory drug celecoxib. Biochemical data obtained using immunoblotting, enzyme-linked immunosorbent assay (ELISA), invasion, and xenografts were further integrated by bioinformatic analyses. Results: Celecoxib reduced cell growth and induced apoptosis through AKT blockade, cleavage of poly (ADP-ribose) polymerase-1 (PARP-1), and proteasomal degradation of the anti-apoptotic protein Mcl-1. Epidermal growth factor receptor (EGFR), ErbB2, and ErbB3 degradation, and heterogeneous nuclear ribonucleoprotein K (hnRNP K) downregulation, further amplified the inhibition of androgen signaling. Celecoxib reduced the invasive phenotype of CRPC cells by modulating NF-kappa B activity and reduced tumor growth in mice xenografts when administered in association with the anti-EGFR receptor antibody cetuximab. Bioinformatic analyses on human prostate cancer datasets support the relevance of these pathways in PCa progression. Conclusions: Signaling nodes at the intersection of pathways implicated in PCa progression are simultaneously modulated by celecoxib treatment. In combination therapies with cetuximab, celecoxib could represent a novel therapeutic strategy to curb signal transduction during CRPC progression.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据