4.7 Article

Thermomechanical coupling investigation in Ti-6Al-4V orthogonal cutting: Experimental and numerical confrontation

期刊

出版社

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.ijmecsci.2019.105322

关键词

Digital image correlation; Infrared thermography; Orthogonal cutting; Damage; Thermomechanical couplings; Behavior

向作者/读者索取更多资源

The constant industrial need of detail data on the chip formation meets with the lack of a physical understanding of the thermo-mechanical couplings during hard metal cutting. In the present paper, numerical and experimental investigations at micro scale (about 0.5 x 0.5 mm(2) area), is performed in order to highlight the mechanisms responsible for the poor Ti-6Al-4V machinability. In a first step, strain, strain-rates, temperatures, dissipated powers along with displacements, velocity and crack propagation are obtained at each pixel by means of VISIR apparatus. Experimental observations have highlighted the dependency of the physical phenomena to both cutting speed and rake angle and provide valuable evidences on the different nature of the coupling phenomenon. Secondly, a 3D FE orthogonal cutting model is then developed to bring a multi-scale comprehension of Ti-6Al-4V chip genesis and to predict the kinematics and thermal quantities. The numerical and experimental confrontation revealed the robustness of the developed FE model as well as its limits. Hence, the element deletion method and the friction model are identified as the main weak spots of the proposed FE model. Finally, a particular attention is paid to the chip formation steps and their impact on the final part.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据