4.6 Article

CO2 storage in the Paluxy formation at the Kemper County CO2 storage complex: Pore network properties and simulated reactive permeability evolution

出版社

ELSEVIER SCI LTD
DOI: 10.1016/j.ijggc.2019.102887

关键词

CO2 sequestration; Pore network modeling; Mineral dissolution; Permeability

资金

  1. Auburn University
  2. U.S. Department of Energy's National Energy Technology Laboratory [FE0029465]

向作者/读者索取更多资源

The Paluxy formation is being considered as a prospective CO2 reservoir at the Kemper County CO2 Storage Complex. Here, the pore and pore-throat size distributions and connectivity of the Paluxy formation is evaluated through analysis of 3D X-ray Computed Tomography images. In spite of resolution limitations that constrain the pore-throat sizes detectable by imaging, the permeability contributing pore-throats are successfully characterized through 3D imaging analysis. Image-obtained pore and pore-throat size distributions and pore connectivity are then utilized to construct pore network models and simulate permeability. After CO2 is injected, it will dissolve into formation brine and create conditions favorable for dissolution of primary minerals and precipitation of secondary minerals. These reactions will alter the porosity and permeability of the system to varying degrees depending on the spatial location of reactions. Here, the possible porosity-permeability evolution is simulated using pore network models considering mineral reactions occurring uniformly and non-uniformly throughout the network. For a given change in porosity, there is a large range of possible permeability outcomes. Depending on the extent and spatial location of mineral reactions, permeability may decrease by more than one order of magnitude as minerals precipitate. During dissolution, simulated permeability increases as much as 500%.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据