4.7 Article

Heat exchanger network design of an organic Rankine cycle integrated waste heat recovery system of a marine vessel using pinch point analysis

期刊

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
卷 44, 期 15, 页码 12312-12328

出版社

WILEY
DOI: 10.1002/er.5212

关键词

exergy; marine engineering; organic Rankine cycle; pinch point analysis; thermodynamic analysis; waste heat recovery

向作者/读者索取更多资源

The coexistence of different kinds of waste heat sources on marine vessels with various temperature ranges increases the need for an optimal heat exchanger network (HEN) design for the heat collection process to reduce the unutilizable heat that needs to be discharged to overboard. The optimal HEN design has not been taken into consideration by using pinch point analysis in previous studies of marine organic Rankine cycle (ORC) systems that utilize from different kinds of waste heat sources. The objective of the study is to determine the optimal HEN design for an ORC integrated waste heat recovery system of a marine vessel by utilizing the pinch point analysis to improve the overall energy efficiency. Lubricating oil, high-temperature cooling water and scavenge air of the main engine, and the exhaust gas emitted from the boiler plant were identified as the major waste heat sources of a reference container ship. A heat collection stream, in which thermal oil is used as the heat transfer fluid that transfers the collected heat to an ORC system, was proposed. The pinch point analysis showed that the optimum waste heat recovery could be gained by separating the scavenge air cooler into three stages and the lubricating oil cooler into two stages. The results of the parametric study for the varying evaporator inlet pressure between 1000 and 3000 kPa showed that R1234ze(Z) yields the best performance among nine different organic working fluids with the thermal efficiency and exergy efficiency of 15.24% and 86.47% for the ORC system, respectively. For the proposed configuration, the unavailable waste heat that cannot be transferred to thermal oil was found as 23.71%, 16.56%, 13.17%, and 7.81% of the total waste heat produced by the heat sources, and also 8.24%, 9.80%, 11.55%, and 12.93% of the net power output produced by the main engine can be recovered for 25%, 50%, 76%, and 100% maximum continuous rating (MCR), respectively.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据