4.7 Article

Identification of a novel type I pullulanase from Fervidobacterium nodosum Rt17-B1, with high thermostability and suitable optimal pH

期刊

出版社

ELSEVIER
DOI: 10.1016/j.ijbiomac.2019.10.112

关键词

Pullulanase; Thermostability; Heterologous expression; Characterization

资金

  1. National Natural Science Foundation of China [31871833]
  2. National Key R&D Program of China [2017YFC1600903]

向作者/读者索取更多资源

Pullulanase could be used in many industrial processes due to its ability to hydrolyze alpha-1,6-glucosidic linkage. During the use of high temperature conditions in industrial production, pullulanase requires high resistance of heat. In this study, a novel type I pullulanase from Fervidobacterium nodosum Rt17-B1 (FN-pullulanase) with a suitable optimal pH and thermostability was discovered. Sequence analysis of FN-pullulanase showed that the enzyme had the typical motif of type I pullulanase (YNWGYDP). The recombinant FN-pullulanase, expressed in Escherichia coli, was purified as a single band on SDS-PAGE with a molecular mass of about 95 kDa. The enzyme showed optimum activity at pH 5.0 and 80 degrees C, and its specific activity was 25.93 U/mg. FN-pullulanase also exhibited good pH stability and thermostability. More than 80% of its initial activity was retained after incubated on ice at pH 3.5-9.0 for 24 h. Its half-life at 65 degrees C was 115.5 h. The enzyme could completely convert pullulan to maltotriose, as well as hydrolyze soluble starch or amylopectin to maltose, maltotriose, maltotetraose, maltopentaose and maltohexaose (G2-G6). Generally, this study identified a novel FN-pullulanase with both high thermostability and suitable optimum pH, which had the potential to be used in starch conversion process. (C) 2019 Published by Elsevier B.V.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据