4.5 Article

Nateglinide Exerts Neuroprotective Effects via Downregulation of HIF-1α/TIM-3 Inflammatory Pathway and Promotion of Caveolin-1 Expression in the Rat's Hippocampus Subjected to Focal Cerebral Ischemia/Reperfusion Injury

期刊

INFLAMMATION
卷 43, 期 2, 页码 401-416

出版社

SPRINGER/PLENUM PUBLISHERS
DOI: 10.1007/s10753-019-01154-3

关键词

nateglinide; inflammatory biomarkers; ischemia; oxidative pathway; neuroprotective

向作者/读者索取更多资源

Ischemic stroke is a major cause of death and motor disabilities all over the world. It is a muti-factorial disorder associated with inflammatory, apoptotic, and oxidative responses. Nateglinide (NAT), an insulinotropic agent used for the treatment of type 2 diabetes mellitus, recently showed potential anti-inflammatory and anti-apoptotic effects. The aim of our study was to elucidate the unique neuroprotective role of NAT in the middle cerebral artery occlusion (MCAO)-induced stroke in rats. Fifty-six male rats were divided to 4 groups (n = 14 in each group): the sham-operated group, sham receiving NAT (50 mg/kg/day, p.o) group, ischemia/reperfusion (IR) group, and IR receiving NAT group (50 mg/kg/day, p.o). MCAO caused potent deficits in motor and behavioral functions of the rats. Significant increase in inflammatory and apoptotic biomarkers has been observed in rats' hippocampi. Janus kinase 2 (JAK2)/signal transducer and activator of transcription 3 (STAT3) pathway was significantly stimulated causing activation of series inflammatory biomarkers ending up neuro-inflammatory milieu. Pretreatment with NAT preserved rats' normal behavioral and motor functions. Moreover, NAT opposed the expression of hypoxia-inducible factor-1 alpha (HIF-1 alpha) resulting in downregulation of more inflammatory mediators namely, NF-kappa B, tumor necrosis factor-beta (TNF-beta), and the anti-survival gene PMAIP-1. NAT stimulated caveolin-1 (Cav-1) which prevented expression of oxidative biomarkers, nitric oxide (NO), and myeloperoxidase (MPO) and hamper the activation of apoptotic biomarker caspase-3. In conclusion, our work postulated that NAT exhibited its neuroprotective effects in rats with ischemic stroke via attenuation of different unique oxidative, apoptotic, and inflammatory pathways.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据