4.7 Article

Communications and Radar Coexistence in the Massive MIMO Regime: Uplink Analysis

期刊

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2019.2939816

关键词

Radar; Clutter; Uplink; Receivers; 5G mobile communication; Wireless communication; Massive MIMO; radar signal processing; co-existence; 5G wireless networks; multicarrier modulation; clutter modeling

资金

  1. Ministero dell'Istruzione dell'Universita e della Ricerca (MIUR) Program Dipartimenti di Eccellenza 2018-2022

向作者/读者索取更多资源

This paper considers the uplink of a massive MIMO communication system using 5G New Radio-compliant multiple access, which has to co-exist with a radar system using the same frequency band. A system model taking into account the reverberation (clutter) produced by the radar system onto the massive MIMO receiver is proposed. In this scenario, several receivers for uplink channel estimation and data detection are proposed, ranging from the simple channel-matched beamformer to the zero-forcing and linear minimum mean square error receivers for clutter disturbance rejection, under the two opposite situations of perfectly known and completely unknown clutter covariance. A theoretical analysis is also provided, deriving a lower bound on the achievable uplink spectral efficiency and the mutual information between the input Gaussian-encoded symbols and the observables available at the communication receiver of the cellular massive MIMO system: regarding the latter, in particular, it is shown that, in the large antenna number regime, and under the assumption of perfect channel state information (CSI), the effect of radar clutter at the base station is suppressed and single-user capacity may be restored. Numerical results, illustrating the performance of the proposed detection schemes, confirm the findings of the theoretical analysis, and permit quantifying the system robustness to clutter effect for increasing number of antennas at the base station.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据