4.7 Article

Learn-As-You-Fly: A Distributed Algorithm for Joint 3D Placement and User Association in Multi-UAVs Networks

期刊

IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS
卷 18, 期 12, 页码 5831-5844

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TWC.2019.2939315

关键词

UAV-assisted networks; UAV-user's association; 3D placement; matching game; potential game; best-response dynamics; K-means

向作者/读者索取更多资源

In this paper, we propose a distributed algorithm that allows unmanned aerial vehicles (UAVs) to dynamically learn their optimal 3D locations and associate with ground users while maximizing the network's sum-rate. Our approach is referred to as 'Learn-As-You-Fly' (LAYF) algorithm. LAYF is based on a decomposition process that iteratively breaks the underlying optimization into three subproblems. First, given fixed 3D positions of UAVs, LAYF proposes a distributed matching-based association that alleviates the bottlenecks of bandwidth allocation and guarantees the required quality of service. Next, to address the 2D positions of UAVs, a modified version of K-means algorithm, with a distributed implementation, is adopted. Finally, in order to optimize the UAVs altitudes, we study a naturally defined game-theoretic version of the problem and show that under fixed UAVs 2D coordinates, a predefined association scheme, and limited interference, the UAVs altitudes game is a potential game where UAVs can maximize the limited interference sum-rate by only optimizing a local utility function. Our simulation results show that the network's sum-rate is improved as compared to both a centralized suboptimal solution and a distributed approach that is based on closest UAVs association.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据