4.7 Article

A Cooperative Driving Strategy for Merging at On-Ramps Based on Dynamic Programming

期刊

IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY
卷 68, 期 12, 页码 11646-11656

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TVT.2019.2947192

关键词

Connected and automated vehicles (CAVs); cooperative driving; on-ramp merging problem; dynamic programming

资金

  1. National 135 Key R&D Program Projects [2018YFB1600600]
  2. National Natural Science Foundation of China [61673233]

向作者/读者索取更多资源

Cooperative driving emerges as a promising way to improve efficiency and safety for Connected and Automated Vehicles (CAVs). Its key idea is to design a strategy to schedule the movements of neighboring vehicles. The typical cooperative driving strategies can be categorized into two categories. The first category is optimal strategy, which aims to find the globally optimal passing order of vehicles, but the computational cost of this strategy grows significantly with the increasing number of vehicles. The second category is sub-optimal strategy, which uses heuristic rules or other methods to export an acceptable local optimal solution within a limited computation time. However, there usually lacks a rigorous theoretical guarantee of the performances, and further validation is always required for practical applications. To overcome all these limitations, a computationally efficient strategy is proposed to obtain the globally optimal passing order based on dynamic programming (DP). Specifically, the problem of merging at on-ramps is resolved by a DP method, which uses the domain knowledge to reduce the complexity by well defining the state space, state transition, and criterion function. With the DP method, it is proved that the globally optimal passing order can be obtained with the quadratic polynomial computational complexity of O(N-2), where N denotes the number of vehicles. Simulation results demonstrate the performances of the proposed strategy regarding optimality and efficiency.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据