4.7 Article

Distributed Synchronized Control in Grid Integrated Wind Farms to Improve Primary Frequency Regulation

期刊

IEEE TRANSACTIONS ON POWER SYSTEMS
卷 35, 期 1, 页码 362-373

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/TPWRS.2019.2928394

关键词

Rotors; Synchronization; Wind speed; Frequency control; Power systems; Centralized control; Wind power generation; Wind farm; primary frequency regulation; system inertia; droop control; communication delay

向作者/读者索取更多资源

In recent years, the continuous growth of grid-integrated wind power generation causes reduction in the inertia of power system, which deteriorates primary frequency regulation (PFR) of grid. Therefore, wind farms (WFs) are recommended to operate at deloaded condition, rather than maximum power point, to provide sufficient primary reserve for improvement of the PFR. To improve PFR, the droop control uses this reserve and the inertia support emulates stored kinetic energy from the rotor of wind turbines. In this paper, a distributed synchronized control (DSC) technique is proposed which uses optimum power share ratio (PSR) and the frequency of each WF at the point of common coupling to calculate the droop. The optimum PSR is based on the ratio of primary reserve at the WF and required change in rotor speed for the WF. An iterative method is proposed to obtain the PSR of each WF. To reduce delay effect on proposed DSC performance, the synchronized droop varies differently with increasing communication delays. The effectiveness of proposed DSC is tested in WF integrated 39-bus New England system and compared with distributed Newton method. The performance of proposed DSC is verified for different false data injection scenarios.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据